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ABSTRACT 
This research focuses on two distinctive determinants of 
DJ popularity in Electronic Dance Music (EDM) culture. 
While one's individual artistic tastes influence the con-
struction of playlists for festivals, social relationships with 
other DJs also have an effect on the promotion of a DJ’s 
works. To test this idea, an analysis of the effect of DJs’ 
social networks and the audio features of popular songs 
was conducted. We collected and analyzed 713 DJs’ 
playlist data from 2013 to 2015, consisting of audio clips 
of 3172 songs. The number of cases where a DJ played 
another DJ's song was 15759. Our results indicate that 
DJs tend to play songs composed by DJs within their ex-
clusive groups. This network effect was confirmed while 
controlling for the audio features of the songs. This re-
search contributes to a better understand of this interest-
ing but unique creative culture by implementing both the 
social networks of the artists’ communities and their artis-
tic representations. 

1. INTRODUCTION 
Network science can enhance the understanding of the 
complex relationships of human activities. Thus, we are 
now able to analyze the complicated dynamics of socio-
logical influences on creative culture. This research fo-
cuses on understanding the hidden dynamics of Electronic 
Dance Music (EDM) culture through both network analy-
sis and audio analysis. 

Disc Jockeys (DJs) are one of the most important ele-
ments of EDM culture. The role of DJs is to manipulate 
musical elements such as BPM and timbre [1] and to create 
unique sets of songs, also known as playlists [2]. DJs are 
often criticized on their ability to “combine” sets of songs, 
since the consistency of atmosphere or mood is influenced 
by the sequence of the songs [3]. Therefore, it is common 
for DJs to compose their playlists with songs from other 
DJs who share similar artistic tastes. However, there are 
other reasons aside from artistic tastes that contribute to a 
DJ’s song selection. DJs sometimes strategically play 
songs from other DJs because they are on the same record 
labels; thus, playlist generation is influenced by a complex 

mixture of artistic and social reasons. This interesting dy-
namic of EDM culture has led us to ask two specific ques-
tions: What reasons are most important for DJs when se-
lecting songs to play at a festival? How do social relation-
ships or audio features influence the popularity of songs? 
By answering these two questions, we can better under-
stand the mechanisms of how DJs gain popularity and how 
their artistic tastes influence the construction of playlists 
for festivals. 

To answer the above, we conducted the following tasks: 
1) DJ networks based on shared songs were collected; 2) 
Audio data of the songs played by the DJs were collected; 
3) Network analysis was conducted on DJ networks; 4) 
Audio features were extracted from the collected audio 
data; 5) The relationships between DJ networks and audio 
features were identified through three longitudinal Fixed 
Effect Models. 

2. RELATED WORKS 

2.1 Social Networks of Musicians 

Network analysis has been widely applied to the field of 
sociology and physics. Recently, researchers have started 
adopting network analysis to better understand the under-
ling mechanisms of art, humanities and artists’ behavior. 
Among the few attempts to implement network analysis in 
the field of music, researchers have tried to investigate 
how musicians are connected to other musicians in terms 
of artistic creativity. 

The effects of collective creation and social networks on 
classical music has been previously studied. McAndrew et 
al. [4] analyzed the networks of British classical music 
composers and argued that it is conceptually difficult to 
separate music from its social contexts. This is because it 
is possible for creative artworks to be influenced by musi-
cians’ social interactions and collaborations, and, moreo-
ver, an artist’s intimate friendships can even create his or 
her own styles and artistic innovations. 

Gleiser and Danon [5] conducted research on racial seg-
regation within the community of jazz musicians of the 
1920’s through social interaction network analysis. Park et 
al. [6] analyzed the properties of the networks of western 
classical music composers with centrality features. The re-
sults of this analysis showed small world network charac-
teristics within the composers’ networks. In addition, com-
posers were clustered based on time, instrumental posi-
tions, and nationalities. Weren [7] researched collegiate 
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marching bands and found that musical performance and 
motivation were higher when musicians were more inte-
grated into a band’s friendship and advice networks. 

It is widely known that the most important elements of 
artistic communities are individuals’ creativity and novelty. 
However, the literature on the social networks of musi-
cians argues that the social relationships of artists are im-
portant elements within creative communities as well. 

2.2 Audio Computing 

There are various feature representations in the field of 
Music Information Retrieval (MIR) [8]. Since the goal of 
the research is to find the influence of DJs’ social relation-
ships and their artistic tastes on music popularity, it is im-
portant to extract audio features that consist of rich infor-
mation. Timbre is one of the most important audio features 
when DJs create playlists [1]. Additionally, tonal patterns 
are equally important in EDM songs [9]. Therefore, we ex-
tracted Mel-frequency cepstral coefficients (MFCC), 
Chroma, tempo and Root-Mean-Square Energy (RMSE) 
to cover most musical characteristics such as musical tex-
ture, pitched content and rhythmic content [10]. Beat syn-
chronous aggregation for MFCC, Chroma and RMSE was 
applied to make features more distinctive [11]. The har-
monic part of the spectrograms were used for Chroma, and 
the percussive part of the spectrograms were used for beat 
tracking by using harmonic percussive separation [12]. Af-
ter the features were extracted, the mean and standard de-
viations of MFCC, Chroma and RMSE were taken to sup-
ply a single vector for each song [1]. All audio feature ex-
traction was conducted with librosa [12]. 

3. HYPOTHESIS 
DJs not only creatively construct their own playlists to ex-
press their unique styles, but also manipulate existing 
songs to their artistic tastes. This process is called remixing. 
DJs remix to differentiate or familiarize existing songs for 
strategic reasons. Therefore, the songs are the fundamental 
and salient elements of EDM culture. For this reasons, DJs 
delicately select songs when constructing playlists to ulti-
mately satisfy universal audiences’ preferences. Thus, the 
frequency of songs selected by DJs represents the popular-
ity of the songs. Thus, the logical question to ask is, “What 
are the most important factors when DJs select songs?” 
Our hypotheses based on this question are as follows:  

 
H1. Song popularity would correlate with DJs’ artistic 

tastes, controlling for the social relationships of DJs.  
 
H2. The social relationships of DJs would influence song 

popularity, controlling for DJs’ artistic tastes. 

4. METHODOLOGY 
Songs’ popularity were calculated based on DJ network, 
while audio features were extracted from audio clips of the 
songs. As a result, we collected and extracted DJ network 

data and audio clips. Ultimately, the dynamics of DJ net-
works and audio features were analyzed through the Fixed 
Effect Model. 

4.1 Data Set 

We collected 713 DJs’ playlist data (from 2013 to 2015) 
through Tracklist.com (from a total of 9 notable festivals: 
Amsterdam Dance Event (Amsterdam); Electric Daisy 
Carnival (global); Electric Zoo (US); Mysteryland (global); 
Nature One (Germany); Sensation (global); Tomorrow-
Land (Belgium); Tomorrowworld (US); Ultra Music Fes-
tival (global)); and audio clips from Soundcloud.com 
(within license policies)).  

Three types of data were constructed based on the col-
lected data: 1) networks of DJs playing other DJs’ songs; 
2) popularity of the songs by calculating the frequencies of 
songs played at each festival; and 3) audio features from 
audio clips, filtering out audio clips that were shorter than 
2 minutes long. To summarize, playlist networks and audio 
clips of 3172 songs with 15759 edges were collected and 
analyzed.  

4.2 DJ Network Analysis 

As shown in Figure 1, DJ networks were constructed based 
on directed edges. When DJ1 plays a song composed by 
DJ2 and DJ3, we consider DJ1 as having interacted with DJ2 
and DJ3. 

The DJ networks consisted of 82 festivals that were 
merged down to 77 events due to simultaneous dates. 
Therefore, we constructed 77 time windows of DJ interac-
tion (play) networks based on festival event occurrence. A 
song's popularity was calculated based on the number of 
songs played in each time window. We also calculated the 
betweenness centrality, closeness centrality, in-degree and 
out-degree of DJs. 
 

 
 

Figure 1. Construction of DJ Networks 
  

The betweenness centrality of a node reflects the broker-
age of the node interacting with other nodes in the network. 
For instance, a higher betweenness centrality signifies that 
the nodes connect different communities. A lower be-
tweenness centrality indicates that the nodes are con-
strained within a community. Closeness centrality repre-
sents the total geodesic distance from a given node to all 
other nodes. In other words, both higher betweenness and 
closeness centralities indicate that the DJs tend to select 
songs of various DJs. Lower betweenness and closeness 



centralities signify that the DJs tend to select songs within 
the same clusters. In-degree is the number of a DJ’s songs 
played by other DJs. Out-degree is the number of a DJ’s 
play count of other DJs’ songs.  

4.3 Audio Analysis 

We extracted audio features related to tempo, volume, key 
and timbre from 3172 songs. The sequential features are 
collapsed into mean and standard deviation values to main-
tain song-level value and dynamics [1]. A total of 52 di-
mensions are used, including tempo (1), mean of RMSE 
(1), mean of Chroma (12), mean of MFCC13 (13), stand-
ard deviation of Chroma (12) and standard deviation of 
MFCC13 (13). 

5. IMPLEMENTATIONS & RESULTS 
We fit a longitudinal fixed effects model:   

 
(1) 

 
, where the dependent variable,  is the frequency of 
a song k that was played in the event t+1. is the lagged 
dependent variable (t). By including the lagged dependent 
variable, we expect to control for "mean reversion" and 
self-promotion effect. 

is a vector of the fixed effects for every song k. By in-
cluding this, the time-invariant and song-specific factors 
are all controlled. For example, the effects of the composer, 

the label, and the performing artists are all controlled for 
with . 

is a vector of time fixed effects. Each song is assumed 
to be played at a particular time whose characteristics such 
as weather and social events would have an exogenous ef-
fect on . controls for the unobserved heterogene-
ity specific to the temporal points. 

is the vector of the song k's audio features which in-
clude the average and standard deviation of Chroma, 
MFCC, RMSE, and tempo. The value of audio features is 
time-invariant and, therefore, perfectly correlated with the 
fixed effects ( ). To avoid perfect collinearity with the 
fixed effects, we quantize the values into five levels, and 
make a five-point variable for each characteristic.  

is the vector of the network covariates. Network 
centralities of DJ i who composed k are calculated using a 
network at time t. In the network matrix, the element wij is 
the frequency i played j's song at time t.  

This research focuses on two distinctive determinants of 
DJ popularity in Electronic Dance Music (EDM) culture. 
While a DJ's individual artistic tastes influence the con-
struction of playlists for festivals, social relationships with 
other DJs also have an effect on the promotion of a DJ’s 
works. To test this idea, an analysis of the effect on song 
popularity by DJ social networks and song audio features 
was conducted. Song popularity among DJs was used as a 
dependent variable. We conducted three different Longi-
tudinal Fixed Effect Models. Model 1 finds the influence 
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of audio features on song popularity, and Model 2 deter-
mines the effect of social relationships on song popularity. 
In this case, social relationship information such as be-
tweenness, closeness, in-degree and out-degree were used 
as independent variables when audio features such as 
RMSE, tempo, Chroma and MFCC were used as control 
variables. This analysis was based on 77 different time 
windows. For Model 3, we combine Model 1 and Model 2, 
controlling the audio features and social relationships on 
song popularity. 

Model 1 shows stable results indicating the presence of 
shared audio features within DJ networks (Appendix 1). In 
particular, the mean of Chroma 10 negatively correlated 
with song popularity (p < 0.001). Chroma 10 represents “A” 
pitch, which can be expressed as “A” key. Considering that 
song popularity is calculated based on DJs playing other 
DJs’ songs, this result suggests that DJs tend to avoid using 
“A” key when composing songs. Therefore, we can argue 
that commonly shared artistic tastes exist. However, artis-
tic tastes will continue to change depending on trends. Fur-
ther study is needed to better interpret the relationships be-
tween audio features and song popularity (Table 1).  
 

Popular songs Popularity Chroma10 
W&W – The Code 92 0.3003 
Hardwell - Jumper 104 0.3012 
Blasterjaxx – Rocket 84 0.2890 
Martin Garrix – Turn 
Up The Speaker 88 0.2349 

Markus Schulz 52 0.2201 

Table 1. Example of songs’ popularity and Chroma 10, 
(mean of entire song’s Chroma 10 = 0.3770; mean of en-
tire songs’ popularity = 7.4943) 

On the other hand, social networks of DJs are expected 
to be more consistent than artistic tastes. Based on Model 
2, the effect of DJ social relationships on song popularity 
showed firm stability (Appendix 1). Based on Model 3, au-
dio features and DJ social networks independently influ-
ence song popularity. Despite socially biased networks of 
DJs, DJs appeared to have shared preferences on audio fea-
tures within their clusters. Table 2 shows negative correla-
tions of song popularity on both betweenness (p < 0.05) 
and closeness (p < 0.001) of DJ networks. In other words, 
the more popular a song is, the more often the song is 
played within the cluster (Figure 4). 

 
Variables Coefficients 

Song Popularity 0.112***   (0.011) 
In-Degree -0.001       (0.001) 
Out-Degree -0.000       (0.001) 
Closeness -0.382*** (0.079) 
Betweenness -0.000*     (0.000) 
Constant -3.274       (2.296) 

Table 2. The Result of the Fixed Effect Model (Standard 
Errors in Parentheses; *** p < 0.001; ** p < 0.01; * p < 
0.05) 

 

 
Figure 4. Composers of popular songs colored within the 
DJs clusters. (Tomorrowland 2014, Belgium) 

 
Based on this result we can conclude that DJs tend to 

play songs composed by DJs from their exclusive groups 
independently from audio features. To conclude, H1 is 
supported by Models 1 and 3. H2 is supported by Models 
2 and 3. 

6. CONCLUSION 
This research focuses on understanding the mechanism of 
artistic preferences among DJs. The artistic preferences of 
universal audiences are not considered in this research. 
Thus, the network cluster effect shown in this research 
needs to be considered as a social bias effect among DJs’ 
artistic collaboration networks rather than the popularity of 
universal audiences. However, the result of the research 
shows that DJs tend to prefer DJs who are centered within 
their clusters. Therefore, the social networks of DJs influ-
ence on their song selection process. 

The contributions of this research are as follows. Firstly, 
creative culture consists of complex dynamics of artistic 
and sociological elements. Therefore, it is important to 
consider both the social networks of artist communities 
and their artistic representations to analyze creative culture. 
Secondly, the proposed research methodology can help to 
unveil hidden insights on DJs’ creative culture. For in-
stance, DJs have unique nature of composing new songs 
by manipulating and remixing existing songs created by 
themselves or other DJs. Burnard [14] stated that the artis-
tic creativity is often nurtured by artists who build on each 
other’s ideas by manipulating the existing artworks. The 
understanding of this interesting collaborative culture can 
unveil novel insights on creative collaboration.  

For future works, we will research the mechanism of ar-
tistic preferences of universal audiences along with DJs’ 
collaboration networks. In addition, more detailed research 
on the effects of audio features on each cluster can provide 
deeper insights on understanding EDM culture. By analyz-
ing the networks of DJs’ remixing behavior and state of 
the art audio analysis, we can further investigate the clus-
ters of DJs’ artistic tastes and their collaboration patterns. 
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APPENDIX 

 

VARIABLES Model (1)  (2)  (3)      

Chroma_mean1_quint 0.279 
(0.208)  0.277 

(0.208) 
Continued (…) Continued 

(…) 
Continued 

(…) 
Continued 

(…) 

Chroma_mean2_quint 0.081 
(0.077)  0.081 

(0.077) MFCC_mean8_quint 0.050 
(0.049)  0.051 

(0.048) 

Chroma_mean3_quint -0.003 
(0.016)  -0.004 

(0.016) MFCC_mean9_quint 0.148* 
(0.076)  0.147* 

(0.075) 

Chroma_mean4_quint -0.306* 
(0.125)  -0.305* 

(0.124) MFCC_mean10_quint -0.097 
(0.069)  -0.097 

(0.069) 

Chroma_mean5_quint -0.043*** 
(0.012)  -0.044*** 

(0.013) MFCC_mean11_quint 0.016 
(0.014)  0.015 

(0.015) 

Chroma_mean6_quint 0.525* 
(0.242)  0.528* 

(0.242) MFCC_mean12_quint -0.087* 
(0.036)  -0.089* 

(0.035) 

Chroma_mean7_quint 0.008 
(0.009)  0.007 

(0.009) MFCC_mean13_quint 0.005 
(0.011)  0.005 

(0.011) 

Chroma_mean8_quint -0.008 
(0.019)  -0.009 

(0.019) MFCC_std1_quint -0.042 
(0.035)  -0.043 

(0.034) 

Chroma_mean9_quint -0.105 
(0.063)  -0.106 

(0.063) MFCC_std2_quint 0.034 
(0.086)  0.035 

(0.086) 

Chroma_mean10_quint -0.089*** 
(0.011)  -0.090*** 

(0.011) MFCC_std3_quint -0.053 
(0.047)  -0.052 

(0.046) 

Chroma_mean11_quint -0.052* 
(0.021)  -0.053* 

(0.021) MFCC_std4_quint 0.038 
(0.037)  0.038 

(0.037) 

Chroma_mean12_quint 0.096 
(0.111)  0.097 

(0.112) MFCC_std5_quint -0.100** 
(0.031)  -0.100** 

(0.032) 

Chroma_std1_quint -0.019 
(0.033)  -0.019 

(0.032) MFCC_std6_quint -0.318** 
(0.097)  -0.318** 

(0.096) 

Chroma_std2_quint -0.252 
(0.177)  -0.253 

(0.177) MFCC_std7_quint -0.103 
(0.071)  -0.104 

(0.070) 

Chroma_std3_quint -0.016 
(0.140)  -0.015 

(0.139) MFCC_std8_quint 0.141** 
(0.053)  0.142** 

(0.054) 

Chroma_std5_quint -0.042*** 
(0.009)  -0.042*** 

(0.008) MFCC_std9_quint -0.053* 
(0.022)  -0.052* 

(0.024) 

Chroma_std6_quint 0.729* 
(0.330)  0.725* 

(0.328) MFCC_std10_quint 0.175 
(0.106)  0.177 

(0.107) 

Chroma_std7_quint -0.004 
(0.030)  -0.003 

(0.030) MFCC_std11_quint -0.017 
(0.014)  -0.018 

(0.014) 

Chroma_std8_quint 0.653* 
(0.306)  0.650* 

(0.306) MFCC_std12_quint 0.017 
(0.011)  0.019 

(0.012) 

Chroma_std9_quint -0.043* 
(0.022)  -0.044* 

(0.023) MFCC_std13_quint 0.020 
(0.025)  0.020 

(0.025) 

Chroma_std10_quint -0.185*** 
(0.035)  -0.185*** 

(0.034) RMSE_mean_quint 0.005 
(0.019)  0.005 

(0.019) 

Chroma_std11_quint -0.036 
(0.075)  -0.035 

(0.075) Tempo_quint 0.010 
(0.006)  0.010 

(0.006) 

Chroma_std12_quint 0.340 
(0.205)  0.338 

(0.204) Song popularity 0.109*** 
(0.011) 

0.114*** 
(0.011) 

0.112*** 
(0.011) 

MFCC_mean1_quint -0.059*** 
(0.016)  -0.058*** 

(0.015) In_degree  -0.001 
(0.001) 

-0.001 
(0.001) 

MFCC_mean2_quint 0.078 
(0.194)  0.079 

(0.193) Out_degree  -0.000 
(0.001) 

-0.000 
(0.001) 

MFCC_mean3_quint -0.169*** 
(0.048)  -0.167*** 

(0.047) Closeness Centrality  
-

0.383*** 
(0.079) 

-
0.382*** 
(0.079) 

MFCC_mean4_quint -0.032 
(0.020)  -0.032 

(0.021) 
Betweenness 
Centrality  -0.000* 

(0.000) 
-0.000* 
(0.000) 

MFCC_mean5_quint 0.108 
(0.055)  0.108 

(0.056) Constant -3.853 
(2.298) 

0.567*** 
(0.115) 

-3.274 
(2.296) 

MFCC_mean6_quint 0.020 
(0.044)  0.019 

(0.042) Song fixed effects Yes Yes Yes 

MFCC_mean7_quint 0.046 
(0.116)  0.046 

(0.115) Time fixed effects Yes Yes Yes 

Continued (…) Continued (…) Continued 
(…) Continued (…) Observations 241,072 241,072 241,072 

    R-squared 0.1335 0.1323 0.1338 
    Adjusted R-squared 0.1214 0.1205 0.1218 
    Number of id 3,172 3,172 3,172 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
 
 
Appendix 1. Fixed Effect Model for Model (1), (2) and (3). 


